64 research outputs found

    Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae) trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae.</p> <p>Results</p> <p>We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae.</p> <p>Conclusions</p> <p>Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially-restricted, impact on juvenile plants, most likely on the survival and growth of seedlings and saplings damaged by foraging peccaries. Given the abundance of fruit produced by each palm, the widespread effects of these small-scale disturbances appear, over long time-scales, to cause directional changes in community structure at larger scales.</p

    Implications of sudden oak death for wildland fire management

    Get PDF
    Human activities and climate change have altered historical disturbance regimes, introduced disturbances, and encouraged novel interactions between multiple disturbances. Ecosystems and the species that comprise them may be poorly equipped to withstand or recover from these altered disturbance regimes. In the fire-prone coastal forests of California and Oregon, sudden oak death (SOD), caused by the pathogen Phytophthora ramorum, is an emerging, non-native plant disease that causes widespread tree mortality and associated implications for fire regimes. Disease-related tree mortality alters fuel loads, with patterns of fuel accumulation varying depending on stand composition, disease severity, and time since pathogen invasion. Simulations and observational studies suggest these altered fuel profiles can impact subsequent fire behavior, and the extent of this interaction may depend on the severity and timing of disease impacts. Initial tree death can elevate the risk of crown ignition, while latter stages can increase surface fuel loading and have been linked to increased fire severity in wildfires. Further, disease history can also influence fire severity with cascading effects leading to unexpected increases in mortality of non-susceptible tree species and changes in nutrient cycling. The longer-term impacts of SOD-fire interactions on system resilience and recovery remain to be seen, but increased fire severity, changed stand structure, and altered biogeochemical cycling may have important consequences for post-fire regeneration and future ecosystem function. Fuels management strategies that diminish crown fire hazards at early stages and mitigate surface fuel hazards at later stages offer some promise, but have yet to be tested in large landscapes. Given SOD-wildfire interactions, further integration of disease- and fire-related management plans will be essential to minimizing impacts of these compounded disturbances

    Exploring the links between secondary metabolites and leaf spectral reflectance in a diverse genus of Amazonian trees

    Get PDF
    Plant defense chemistry is often hypothesized to drive ecological and evolutionary success in diverse tropical forests, yet detailed characterizations of plant secondary metabolites in tropical plants are logistically challenging. Here, we explore a new integrative approach that combines visible-to-shortwave infrared (VSWIR) spectral reflectance data with detailed plant metabolomics data from 19 Protium (Burseraceae) tree species. Building on the discovery that different Protium species have unique chemistries yet share many secondary metabolites, we devised a method to test for associations between metabolites and VSWIR spectral data. Given species-level variation in metabolite abundance, we correlated the concentration of particular chemicals with the reflectance of the spectral bands in a wavelength band per secondary metabolite matrix. We included 45 metabolites that were shared by at least 5 Protium species and correlated their per-species foliar abundances against each one of 210 wavelength bands of field-measured VSWIR spectra. Finally, we tested whether classes of similar metabolites showed similar relationships with spectral patterns. We found that many secondary metabolites yielded strong correlations with VSWIR spectra of Protium. Furthermore, important Protium metabolite classes such as procyanidins (condensed tannins) and phytosterols were grouped together in a hierarchical clustering analysis (Ward’s algorithm), confirming similarity in their associations with plant spectral patterns. We also found a significant correlation in the phenolics content between juvenile and canopy trees of the same species, suggesting that species-level variation in defense chemistry is consistent across life stages and geographic distribution. We conclude that the integration of spectral and metabolic approaches could represent a powerful and economical method to characterize important aspects of tropical plant defense chemistry

    Seasonality of reproduction in an ever-wet lowland tropical forest in Amazonian Ecuador

    Get PDF
    We thank Pablo Alvia, Alvaro Pérez, Zornitza Aguilar, Paola Barriga, Matt Priest, Caroline Whitefoord, and Gorky Villa for assistance in collecting data or identifying species; Elina Gomez for entry of trap data; Hugo Navarrete, Katya Romoleroux and the QCA herbarium staff, and David Lasso and the ECY staff for help with logistics and needed permitting; Rick Condit, Elizabeth Losos, Robin Foster, and Henrik Balslev for initial encouragement to work within the Yasuní Forest Dynamics Plot; Hugo Romero for initially summarizing the YFDP and SSP weather data sets; Pablo Jarrin for setting up the TEAM weather station, and David Lasso and Carlos Padilla for maintaining that equipment and making the data available; and the Ecuadorian Ministerio del Ambiente for permission to work in Yasuní National Park [No 014-2019-IC-PNY-DPAO/AVS, No 012-2018-IC-PNY593-DPAO/AVS, No 008-2017-IC-PNY-DPAO/AVS, No 012-2016-IC-FAU-FLO-DPAO-PNY, No 594-014-2015-FLO-MAE-DPAO-PNY, and earlier permits]. The Forest Dynamics Plot of Yasuní National Park has been made possible through the generous support of the Pontifical Catholic University of Ecuador (PUCE) funds of donaciones del impuesto a la renta, the Government of Ecuador, the US National Science Foundation, the Andrew W. Mellon Foundation, the Smithsonian Tropical Research Institute, and the University of Aarhus of Denmark. The phenology project began while NCG was at the Natural History Museum, London, with funding (2000–2004) from the Department of Botany (NHM), the Andrew W. Mellon Foundation, British Airways, and the Natural Environment Research Council (GR9/04037). It continued with NCG at Southern Illinois University Carbondale (2005–2023). We thank the Center for Tropical Forest Science for transitional funding (2006–2008, 2017–2018) and the National Science Foundation LTREB program for long-term funding (2006–2020; DEB-0614525, DEB-1122634, DEB-1754632, DEB-1754668).Peer reviewedPublisher PD

    The Anisotropic Spatial Distribution of Hypervelocity Stars

    Full text link
    We study the distribution of angular positions and angular separations of unbound hypervelocity stars (HVSs). HVSs are spatially anisotropic at the 3-sigma level. The spatial anisotropy is significant in Galactic longitude, not in latitude, and the inclusion of lower velocity, possibly bound HVSs reduces the significance of the anisotropy. We discuss how the observed distribution of HVSs may be linked to their origin. In the future, measuring the distribution of HVSs in the southern sky will provide additional constraints on the spatial anisotropy and the origin of HVSs.Comment: 4 pages, accepted to ApJ Letter

    Wildfire Alters the Disturbance Impacts of an Emerging Forest Disease via Changes to Host Occurrence and Demographic Structure

    No full text
    Anthropogenic activities have altered historical disturbance regimes, and understanding the mechanisms by which these shifting perturbations interact is essential to predicting where they may erode ecosystem resilience. Emerging infectious plant diseases, caused by human translocation of nonnative pathogens, can generate ecologically damaging forms of novel biotic disturbance. Further, abiotic disturbances, such as wildfire, may influence the severity and extent of disease-related perturbations via their effects on the occurrence of hosts, pathogens and microclimates; however, these interactions have rarely been examined. The disease ‘sudden oak death’ (SOD), associated with the introduced pathogen Phytophthora ramorum, causes acute, landscape-scale tree mortality in California\u27s fire-prone coastal forests. Here, we examined interactions between wildfire and the biotic disturbance impacts of this emerging infectious disease. Leveraging long-term datasets that describe wildfire occurrence and P. ramorum dynamics across the Big Sur region, we modelled the influence of recent and historical fires on epidemiological parameters, including pathogen presence, infestation intensity, reinvasion, and host mortality. Past wildfire altered disease dynamics and reduced SOD-related mortality, indicating a negative interaction between these abiotic and biotic disturbances. Frequently burned forests were less likely to be invaded by P. ramorum, had lower incidence of host infection, and exhibited decreased disease-related biotic disturbance, which was associated with reduced occurrence and density of epidemiologically significant hosts. Following a recent wildfire, survival of mature bay laurel, a key sporulating host, was the primary driver of P. ramorum infestation and reinvasion, but younger, rapidly regenerating host vegetation capable of sporulation did not measurably influence disease dynamics. Notably, the effect of P. ramorum infection on host mortality was reduced in recently burned areas, indicating that the loss of tall, mature host canopies may temporarily dampen pathogen transmission and ‘release’ susceptible species from significant inoculum pressure. Synthesis. Cumulatively, our findings indicate that fire history has contributed to heterogeneous patterns of biotic disturbance and disease-related decline across this landscape, via changes to the both the occurrence of available hosts and the demography of epidemiologically important host populations. These results highlight that human-altered abiotic disturbances may play a foundational role in structuring infectious disease dynamics, contributing to future outbreak emergence and driving biotic disturbance regimes

    Interacting Disturbances: Wildfire Severity Affected by Stage of Forest Disease Invasion

    No full text
    Sudden oak death (SOD) is an emerging forest disease causing extensive tree mortality in coastal California forests. Recent California wildfires provided an opportunity to test a major assumption underlying discussions of SOD and land management: SOD mortality will increase fire severity. We examined prefire fuels from host species in a forest monitoring plot network in Big Sur, California (USA), to understand the interactions between disease-caused mortality and wildfire severity during the 2008 Basin Complex wildfire. Detailed measurements of standing dead woody stems and downed woody debris 1–2 years prior to the Basin fire provided a rare picture of the increased fuels attributable to SOD mortality. Despite great differences in host fuel abundance, we found no significant difference in burn severity between infested and uninfested plots. Instead, the relationship between SOD and fire reflected the changing nature of the disease impacts over time. Increased SOD mortality contributed to overstory burn severity only in areas where the pathogen had recently invaded. Where longer-term disease establishment allowed dead material to fall and accumulate, increasing log volumes led to increased substrate burn severity. These patterns help inform forest management decisions regarding fire, both in Big Sur and in other areas of California as the pathogen continues to expand throughout coastal forests
    corecore